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Abstract
A novel type of numerical tool for separate-verification,
a verification controller, is proposed and demonstrated.
Verification controllers can ensure the accuracy and
enhance the efficiency of separate time and space
convergence studies by decoupling discretization errors.
These supplemental tools are algebraic constraints on
time-steps and grid-spacings that must be satisfied
concurrent with the convergence-study simulations.
Two verification controllers are presented: the
discretization-error ratio ( ) and the convergence-
power ratio ( ). Temporal convergence studies are
conducted and suggest that the  is more practical
than time-steps or grid-spacing for the a-priori
separation of discretization errors. The  appeared
to be a similarity variable for separate verification
because all of the convergence histories coalesced onto
a single error profile. The  also implied a universal
constant for decoupling errors; to accurately conduct
separate verification analyses, the discretization errors
must differ by at least one order-of-magnitude.

Introduction
Numerical solution methods for partial-differential

equations (PDE) discretize continuum fields in time and
space.1,2 This finite approximation of a continuum
embeds discretization errors into numerical simulations
that are modeled in the PDE solver’s error-ansatz
equation. Verification analyses for PDE solvers, the
study of their error-ansatz equation, should include time
and space convergence studies. These computational
studies, like all numerical PDE solutions, must be
conducted in time and space asymptotic regimes
wherein the numerical error is uniformly reduced as the
discretization parameters are refined. The extent of each
asymptotic regime and any relationship between these
regimes, however, are not well defined prior to
conducting numerical simulations. This report focuses
on the specification of time-steps and grid-spacings so
that separate time and space convergence studies are
conducted in properly defined asymptotic regimes.

Convergence studies help confirm the computational
implementation and theoretical foundation of numerical

DER
CPR

CPR

DER

DER

solution methods.3-6 Convergence studies use the
discretization error, the difference between computed
and reference solutions, from multiple simulations to
solve for parameters in the error-ansatz equation. The
error model’s unknowns are verification metrics7:
convergence coefficients and rates. Convergence studies
provide computational evidence of the functional
properties postulated in the error-ansatz equation. If the
simulation error is reduced under time-step and grid
refinement, convergence studies also support the
mathematical consistency of the numerical solver with
the governing PDEs. For numerical solvers with many
error sources, such as time and space discretization,
there are at least two approaches to solving the error-
ansatz equation: simultaneous and separate verification.

Simultaneous verification solves the original or full-
ansatz equation wherein the total discretization error is
modeled with time-step and grid-space dependent terms.
Time and space verification metrics are computed
concurrently by solving a system of non-linear, full-
ansatz equations.8 This solution, however, presents
challenges: ambiguous initial condition specification
together with potential multiple solutions, and the
stability and expense of an iterative solution. In contrast,
separate verification solves two reduced-ansatz
equations that are obtained by partitioning the total
discretization-error model into time-step and grid-space
dependent segments. Time and space metrics are
computed individually by solving both of these error
models. Reduced-ansatz equations possess an efficient,
closed-form analytical solution since they model each
discretization-error source with one simple term.

The accuracy of separate verification analyses is
predicated on obtaining a single-source discretization
error; each reduced-ansatz equation defines the total
simulation error as wholly either time or space error.
Prescribing simulation series to isolate a single source
of discretization error, however, is problematic. The
only measurable discretization error is the total value,
which generally includes both time and space
components. Separating two sources of independent
discretization error could be straightforward using the
full-ansatz equation if estimates of each verification
metric were known. Unfortunately, while convergence
rates may be predicted, convergence coefficients,
scaling products proportional to solution derivatives, are
generally not known a-priori to any simulation.
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The goal of this effort is to ensure the accuracy and
enhance the efficiency of separate-verification analyses.
This analysis approach involves conducting separate
time and space convergence studies, and is prevalent in
the literature for verification of numerical PDE solvers.
Indeed, independent discretization-error models are
frequently confirmed by modified-equation analysis, the
formal derivation of error-ansatz equations.9-11 For
numerical methods without derived error models,
separate verification provides an estimate of verification
metrics and evaluation of error-model assumptions.
Separate verification also provides an initial approach
for verifying coupled-physics simulators that combine
disparate PDE solvers. These simulators solve for
numerous continuum fields whose discretization
variables, including time and space, each represent a
potential reduced-ansatz equation. The metrics obtained
by solving reduced-ansatz equations, however, are not
guaranteed to be accurate; no formal mechanism exists
to a-priori decouple discretization errors.

This report proposes a novel, supplemental tool for
separate-verification analyses: verification controllers.
These numerical tools are algebraic constraints relating
time-steps and grid-spacings, which must be satisfied
concurrent with convergence-study simulations.
Verification controllers are based upon the full-ansatz
equation, and decouple independent discretization errors
by estimating when they contribute equally to the total
simulation error. When combined with heuristic data
about maximum allowable time-steps and grid-spacing,
both extents of a separate-asymptotic regime may be
predicted. Separate-asymptotic regimes are the desired
regions wherein the simulation error is dominated by a
single source of error. The ability to focus on a single
source of discretization error would guarantee the
consistency of computed errors with the reduced-ansatz
equation and, thus, ensures the accuracy of separate
verification. Furthermore, well prescribed simulation
series enhance the efficiency of separate verification
analyses; convergence studies would require a minimum
number of simulations because their computed solutions
would fall within separate-asymptotic regimes.

This report continues with a brief description of the
ansatz equation comprised of independent time and
space discretization errors. The separate-verification
method is then outlined, including the equations used to
compute metrics. The mathematical and operational
requirements for accurately solving reduced-ansatz
equations are then discussed, followed by development
of verification controllers. A temporal convergence
study of a common PDE solver, one that can produce
comparable time and space discretization error, is then
presented. A summary concludes this document.

Separate-Verification Analysis
Separate-verification analysis of numerical solvers is

widely applicable because reduced-ansatz equations can
model various discretization-error sources. This report
is focused on temporal and spatial verification because
discrete time and space approximations are common
sources of error within numerical PDE solvers.

Error Ansatz
Separate-verification analysis of numerical solution

methods is predicated on the generation of independent
discretization errors. For numerical PDE solvers, the
total discretization error, , may be modeled as the
summation of independent spatial, , and temporal,

, components as presented in Equation 1.

(1)

Modeling discretization errors generated by PDE
solvers as mathematically independent is often
confirmed by modified-equation analysis.9-11 This
technique derives error-ansatz equations by substituting
solution variables in discrete equations with Taylor’s
series expansions. The analysis’ objective is to recover
the original, continuum PDE together with remainder
terms that define the truncation error. The lowest-order
of these additional terms generally comprise the error
model, and they are explicit functions of the space and
time discretization parameters: the grid-spacing, ,
and time-step, . Independent space and time errors
are then modelled as  and .
An error-ansatz equation comprised solely of these two
terms is presented in Equation 2.

(2)

The numerical method’s order-of-accuracy, the rate at
which computed solutions converge to the continuum
solution under grid and time-step refinement, is set by
the space and time convergence rates,  and . The
convergence coefficients,  and , are proportional to
suitably averaged spatial and temporal solution
derivatives, whose order of differentiation is set by the
accuracy of the spatial-operators and time-integrators
used in the numerical solver. Moreover, convergence
coefficients are a measure of the component spatial and
temporal discretization error. Their relative magnitude,
which is not known a-priori to any simulation, suggests
which component may dominate the total error.

Verification Metrics
A primary goal of verification analyses is evaluating

convergence rates. Separate convergence studies focus
on individual error sources, and provide an operational
convenience for computing verification metrics.
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The remainder of this report, unless otherwise noted,
will focus on temporal-verification analysis. All further
developments and discussion, however, are equally
valid for separate-spatial verification. When  is
wholly comprised of temporal-discretization error, then
Equations 1 and 2 can be simplified into the temporal
reduced-ansatz equation as presented in Equation 3.

(3)

For verification analyses, the total discretization error
is defined as the difference between computed, , and
reference, , solutions, and it is often measured using a
function norm: . If  is measured using
norms and any source of error may dominate the total
error, then  and . Two evaluations of
Equation 3 and, thus, two numerical simulations are
required to compute both temporal-verification metrics:

 and . These simulations are conducted using unique
‘coarse’ and ‘fine’ time-steps,  and , and
generate two corresponding, unique total discretization
errors:  and . The solution of Equation 3
is then straightforward. The temporal-convergence rate,

, is often computed first by the quotient in Equation 4.

(4)

In Equation 3, either combination of coarse or fine
time-step and error-norm can then be used to compute

. The temporal-convergence coefficient, , may then
be computed as presented in Equation 5.

(5)

Equations 4 and 5 represent a simple, robust method
for solving the temporal reduced-ansatz equation. These
solution equations are also easily adapted for computing
verification metrics for other discretization-error
sources that are modeled similar to Equation 3.

Separate Asymptotic Regimes
An important, but often overlooked, objective of

convergence studies is to confirm that the verification
metrics are relatively constant in the asymptotic regime.
No formal criterion exists or is offered herein to gauge
the relative constancy of metrics. Instead, the use of
verification controllers to prescribe asymptotic regimes
represents a first-step towards making that subjective
determination about constant verification metrics.

Obtaining sufficiently steady verification metrics is
important for many reasons. Only steady convergence
rates, as determined by the analyst, can be compared to
theoretical predictions. If the convergence rate is not

Etotal
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steady then the discretization error may become
unbound, which implies that the numerical solver is
inconsistent with the governing equations. Unsteady
verification metrics also suggest that the error-ansatz
might not properly characterize the discretization error,
and an alternative model may be necessary. Conversely,
sufficiently steady verification metrics imply that the
ansatz equation is an appropriate error model and that
the convergence study was conducted in an asymptotic
regime. For separate verification, steady metrics
confirm that the reduced-ansatz equations correctly
model independent discretization errors.

The challenge of obtaining steady verification metrics
stems from the approximations inherent to error models.
Error-ansatz equations are models imposed upon the
convergence data. This imposition is necessary because
the formal derivation of truncation error is not always
possible, particularly for complex numerical PDE
solvers applied to general problems. Inclusion of all of
the truncation error’s terms in the error-ansatz equation
would also not be practical. The form of the error-ansatz
equations, however, are guided by truncation-error
analysis; generally, both error equations contain scaled,
power-law terms with respect to  and .

An important difference between truncation-error and
error-ansatz equations is variability of their parameters.
Since truncation error is derived from Taylor’s series, its
coefficients and exponents are constant. In contrast, an
error-ansatz approximates or models discretization error
since it retains or assumes only the lowest-order terms
of the truncation error. The coefficients and exponents
of the error-ansatz equation, the verification metrics,
could then not be expected to also be constant. Indeed,
verification-metric variability may partially expose the
simplification of the error-ansatz from the truncation-
error equation. While it is important to assess whether
convergence studies are conducted within asymptotic
regimes, and that assessment is often gauged by whether
the metrics are relatively constant, a formal criterion for
measuring or assessing that variability does not exist.

An approach that is currently used to ascertain steady
verification metrics can also simultaneously, but only
partially, characterize asymptotic regimes. This heuristic
method generates a surplus number of simulations to
solve Equation 3. Using these simulations, multiple sets
of metrics are computed and compared. If the metric
sets are relatively constant then the convergence study
was conducted within a separate-asymptotic regime, and
the metrics reported are often an average of those
already found. If the metrics are not sufficiently steady
then additional simulations, with succeedingly refined
discretization parameters, are conducted until the

∆x ∆t
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newly-found metrics converge. Using discretization
parameters from this final, expanded simulation series
to define a portion of the asymptotic regime is then
possible but superfluous; steady metrics have already
been obtained. Convergence studies for separate
verification, therefore, are generally iterative and only
completed when the metrics are sufficiently steady.

Once steady metrics are found, one essential criterion
of verification analysis is the comparison of computed
and predicted convergence rates. If these rates match,
this provides evidence that the software has faithfully
implemented the numerical solver. Failure of the
convergence rates to match may be caused by many
factors including error-modeling assumptions. For
separate verification, the independence of error sources
must be confirmed. The discretization error used to
solve reduced-ansatz equations must be pure; it must be
produced by a single error source. If the error is not
pure, then any metric obtained through separate
verification is not accurate as defined by reduced-ansatz
equations and, thus, they are not valid for verification.

Verification controllers are designed to ensure that
reduced-ansatz equations are solved with pure
discretization error. This guarantee would eliminate any
doubt about the accuracy of separate-verification
analyses if computed convergence rates fail to match
predicted values. The list of subsequent analyses would
then be narrowed to include a more complex error
model for verification, or an intensive investigation of
the numerical solver. Pure discretization error is only
produced within separate-asymptotic regimes. As
described above, the prevalent approach to separate
verification does partially define these regimes after
obtaining steady metrics, but only extraneously. An
alternative methodology, adopted in this effort, reverses
this process: first define a separate-asymptotic regime,
then compute steady, accurate verification metrics.

 Throughout the remainder of this report, steady
verification metrics will refer to sufficiently constant
convergence coefficients and rates unless indicated

Operational Requirements for Separate Verification
Mathematical and operational requirements exist for

separate-verification. The mathematical requirements,
reflected in Equations 1 and 2, include the independence
of error-model terms. Equally important are two
operational requirements. First, the time-steps and grid-
spacing used for verification must ensure mathematical
consistency between the discrete and continuum
variants of the governing equations. Second, unique sets
of  and  must elicit separately the errors defined
in the time and space reduced-ansatz equations.

∆t ∆x

Separate Temporal Verification
An idealized error profile for separate-temporal

verification is presented in Figure 1. This convergence
history is plotted as the total numerical error verses the
time-step. In order to minimize computational expense,
temporal convergence studies usually progress from
larger to smaller time-steps. The start of the temporal
asymptotic regime is on the right-hand-side of Figure 1.
For time-steps below the maximum allowable value,

, there are two distinct segments of the error
profile. Initially, temporal discretization error dominates
the total error. When , the slope of the error
profile on a logarithmic scale is, , the temporal-
convergence rate. This region is the separate-temporal
asymptotic regime. The exit of this regime is indicated
by the minimum allowable time-step, . As the
time-step is further refined,  is reduced and spatial
error dominants the total error: .

While each convergence-profile segment in Figure 1
corresponds to individual, dominant error sources, both
errors exist in numerical PDE simulations. The dashed
lines in Figure 1 are a continuation of the variable-
temporal and constant-spatial components of the total
numerical error. Since both  and  exist, then the
time-step and grid-spacing must fall in their respective
asymptotic regimes. For numerical PDE solvers to
achieve mathematical consistency, not only should

, but  must also be within the spatial
asymptotic regime. The maximum allowable grid-
spacing, , would be available from the required,
concurrent spatial convergence study. In Figure 1, the
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Figure 1: Temporal Convergence History With Constant 
Spatial Discretization Error; Total Error vs. Time-Step.
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full-ansatz equation is valid for all time-steps below
 if . The accurate solution of the

temporal reduced-ansatz equation, however, is restricted
to the shaded region between  and , but

 must also be satisfied.

Accurately solving reduced-ansatz equations requires
well defined, wide asymptotic regimes. For separate-
temporal verification, numerous simulations may be
required to ascertain converged metrics and establish

. If the steady convergence rate does not match
the predicted value, however, separate verification’s
existing approach offers no guidance as to whether the
error was not pure below  or that the original
error model is inadequate. Eliciting pure temporal error
may be possible by suppressing the spatial error; in
Figure 1, lowering  would reduce  and, thus,
widen the separate-temporal asymptotic regime. The
grid-spacing corresponding to a reduced , possibly
below , might increase the convergence study’s
computational expense, but this operational restriction
may be necessary for separate-temporal verification.

Verification Controllers
Separating time and space discretization errors for

verification analyses is predicated upon the ability to
first determine when they are equivalent: . If this
relationship was modeled using  and  as
independent variables, then these parameters could be
manipulated to alternately suppress one error source and
expose the other error. This equivalence model, together
with limiting constants, could then be a time-step, grid-
space controller for separate verification analyses, or as
succinctly termed herein a verification controller.

Discretization-Error Ratio (DER)
Simplifying the total discretization-error model into

the temporal reduced-ansatz equation is only possible if
. This suggests defining a verification controller

as the quotient of discretization errors, termed herein a
discretization-error ratio ( ). One option for
defining this quotient would place the minimized error
in the numerator and the verification analyses’ objective
error in the denominator. Separate temporal and spatial
verification analyses then require reciprocal error ratios.
Each  is identified herein by the quotient’s
numerator. Using this nomenclature, separate-temporal
verification uses the spatial discretization-error ratio,

, which is defined in Equation 6.

(6)

The  directly relates discretization errors; when
 and  are comparable . In Figure 1,

∆tmax ∆x ∆xmax≤
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∆tmax
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Es Et«

DER
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DERs

DERs
Es
Et
----- A ∆x( )p

B ∆t( )q
-------------------≈=

DERs
Es Et DERs 1≈

 corresponds to a pivotal time-step; the total
discretization error is dominated by a single error source
on either side of . When the spatial error
dominates the temporal error, , the  is
much greater than unity, , and .
Conversely, when the temporal error dominates the
spatial error, , the  is much less than one,

, and . While verification metrics
serve as constants in Equation 6,  and  are the
independent variables of the .

As independent variables,  and  may exhibit
weak problem dependencies because time-steps and
grid-spacings are often selected according to important
simulation features, e.g. solution gradients. In contrast,

 and , the two discretization parameters
that bound separate-temporal asymptotic regimes, are
algorithm and problem dependent. For example, the
regime’s exit occurs when , or as modeled
herein when . As functionally
related to convergence coefficients and rates,  is,
therefore, algorithm and problem dependent. The time-
step that defines a separate-temporal asymptotic
regime’s start is similarly dependent as reflected by the
necessarily heuristic search for  conducted
concurrent to temporal convergence studies.

Verification controllers offer an alternative, indirect
measure of separate asymptotic regimes. For example,
instead of directly using  and  to define a
temporal asymptotic regime, a pair of  values
could define the regime’s extent. The regime’s bounding
time-steps could then be quantified using Equation 6.
Moreover, a verification-controller’s regime-bounding
limits may offer reduced algorithm and problem
dependencies relative to  or . By abstracting a
regime’s extent from discretization parameters to
relationships between the error components, verification
controllers generalize the definition of separate
asymptotic regimes. Verification-controller limits may
then be more easily obtained and even constant under
certain conditions and, thus, more widely applicable.

The present objective is to define separate-temporal
asymptotic regimes without one or both of the algorithm
and problem dependencies of  and . The
most important of these time-steps is . For any
grid-spacing, Equation 6 infers that  corresponds
to the maximum spatial discretization-error ratio:

. As discussed below,  is known
prior to conducting convergence studies. In contrast,
there exists no known, non-zero value for ,
which corresponds to . While a separate-temporal
asymptotic regime is defined by , a
null value for  is not relevant; if 
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then  and there is no need to separate time and
space errors. The , together with other
heuristic information about , then effectively
define a separate-temporal asymptotic regime.

Within a separate-temporal asymptotic regime
. Unity, however, is not a proper

value for ; this limit would not guarantee
pure temporal discretization error. Postulate instead that
to confidently attribute the total discretization error to a
single error source, the minimized error must be at least
one order-of-magnitude smaller than the objective error.
For separate-temporal verification then 
and  would be replaced by the generalized
limit . As a direct comparison of discretization
errors, expressed as a non-dimensional quotient, the

 incorporates all pertinent information for
verification controllers; the  may then be a
universal constant for separate verification.

Implicit in the above premise is that the  is a
similarity variable for separate verification. If the total
discretization error were plotted verses this quotient, all
convergence profiles would coalesce onto one profile.
More important for this effort, the  would be
devoid of algorithm and problem dependencies and,
thus, broadly applicable in defining separate asymptotic
regimes. The  bounds, together with a proposed
limiting constant, are presented in Equation 7.

(7)

The  is an obvious, straightforward candidate
for separating time and space discretization errors.
Equation 6, however, cannot be used to a-priori separate
these errors because convergence coefficients are not
known prior to conducting simulations. The most
important feature of the  is the functionality
modeled in Equation 6; the efficacy of a numerical
solution method to reduce component discretization
errors is embodied in the products  and 
termed herein convergence powers.

Convergence-Power Ratio (CPR)
Another verification controller, the convergence-

power ratio ( ), compares the efficacy of a
numerical solver to reduce component discretization
errors. The  is a non-dimensional quotient of
convergence powers; the minimized error’s convergence
power is in the numerator and the objective error’s
convergence power is in the denominator. Separate
temporal and spatial verification then require reciprocal
convergence-power ratios. Each  is identified
herein by the quotient’s numerator. Separate-temporal
verification then uses the spatial convergence-power

Es 0=
DERs max,

∆tmax

DERs Es Et⁄= 1«
DERs max,
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DERs max,
DERmax

DERs
DERmax
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DERmax

DERs

DERs min, DERs DERmax 10 1–≈≤ ≤

DERs
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∆t( )q ∆x( )p

CPR
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CPR

ratio, , which is defined in Equation 8.

(8)

Equation 8 uses two non-dimensional discretization
parameters:  and . The time
and length scales,  and , may be arbitrarily set but
they often reflect important simulation features.

An idealized error profile for separate-temporal
verification, plotted as the total numerical error verses
the , is presented in Figure 2. In order for Figures
1 and 2 to correspond, the abscissa in Figure 2 is
reversed. For constant grid-spacing, Equation 8 is
minimized when the time-step is relatively large so the

 corresponds to the asymptotic regime’s start
at . Conversely,  corresponds to the
regime’s exit at . In Figure 2, the slope of the
separate-temporal regime on a logarithmic scale is .
This slope is identical for all integrators regardless of
their temporal convergence rate as a consequence of
including  in the denominator of the , 

As implied within Figure 2, the extent of a separate-
temporal asymptotic regime can be set by 
and . The corresponding time-steps, 
and , could then be computed using Equation 8.
This procedure relies upon knowing the convergence
rates,  and  prior to the convergence study. This
procedure also requires that both  limits are
known. As functionally dependent upon , the
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Figure 2: Temporal Convergence History With Constant 
Spatial Discretization Error; Total Error vs. CPRs.
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 is algorithm and problem dependent; it must
then be found iteratively within the temporal
convergence study. This renders the 
superfluous to the a-priori specification of asymptotic
regimes. The , together with other heuristic
information about , then effectively define the
full extent of a separate-temporal asymptotic regime.
The  bounds are presented in Equation 9.

(9)

 While the  may be a universal constant for
separate verification, the  is not easily
postulated. The limit , however, can be
determined through computational experiments.
Graphical methods for determining the  and

 are demonstrated later in this report.

Contrasting Verification Controllers
Verification controllers are conceptually distinguished

by the types of terms used to compare error sources. A
straightforward controller would compare discretization
errors directly as this is necessary to simplify full-ansatz
equations. The  embodies this comparison and
intrinsically provides a universal constant, ,
for separating errors. The , however, cannot be
used to a-priori specify  and  for separate
convergence studies as it includes solution-dependent
convergence coefficients. In contrast, the  reduces
solution dependencies by not including  and , but it
does not directly compare discretization errors. Instead,
the  compares the potential to reduce errors under
time-step or grid-spacing refinement.

Verification controllers are procedurally distinguished
by their implementation and versatility within separate
convergence studies. Using the  requires that 
and  are known prior to conducting the convergence
study, but these constants are unknown for any
particular simulation. Convergence coefficients are also
solution dependent which precludes their reuse in
subsequent verification analyses of other problems.
Simultaneously solving reduced-ansatz equations and
satisfying the  is then a heuristic, iterative
procedure. While the  is valid for all separate-
verification analyses, using Equation 6 to quantify time-
steps that bound separate-temporal asymptotic regimes
is limited to a single convergence study.

In contrast, the  can be used non-iteratively for
separate-verification. The constants in Equation 8 are
known prior to conducting convergence studies. Using
this equation, any value of  is then sufficient
to predict  for any grid-spacing. The non-iterative
implementation procedure afforded by the  is
essential for the practical use of verification controllers.
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CPRs min, CPRs CPRs max,≤ ≤

DERmax
CPRs max,

CPRs max,

CPRs max,
DERmax

DER
DERmax

DER
∆t ∆x

CPR
A B

CPR

DER A
B

DER
DERmax

CPR

CPRs max,
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CPR

Asymptotic Regime Time-Steps
As discussed above, of the two verification controllers

proposed, only the  can be used to a-priori
separate discretization errors. For separate-temporal
convergence studies,  and the  bound
the asymptotic regime. While  is found within the
convergence study, the  must be known
before conducting the study’s simulations. This
verification-controller limit indirectly determines the
minimum time-step . The relationship between

 and  is presented in Equation 10.

(10)

The use of Equation 10 to predict the error-decoupling
time-step is straightforward. For any grid-spacing, an
equation for  is presented in Equation 11, where
all of the variables are known including .

(11)

The remainder of this report will include using the
 to predict time-steps to decouple time and space

errors. Convergence studies will then be conducted to
assess the accuracy of these predictions. Moreover, the
basic concepts underlying both the  and 
verification controllers will also be examined.

Demonstration Problem
To assess the theoretical concepts and practical utility

of verification controllers, a demonstration problem
must satisfy various requirements. First, the numerical
solver must produce time and space discretization errors
of comparable magnitude. Second, a full error profile,
with distinct time and space-dominant regions similar to
Figures 1 and 2, is required to identify the simulation
parameters when the errors are equivalent. Verification
controller limits are then extracted from the asymptotic
regime’s exit. This method may be relatively expensive
computationally and requires a reference solution, but it
is straightforward and requires few assumptions.

Governing Equations
The equation selected for this demonstration effort

governs the one-dimensional advection of a particle
within a velocity field. For this problem, the rate-of-
change of the particle’s position, , is equal to the
velocity function, , as presented in Equation 12.

(12)

Particle advection may be modeled as an autonomous
equation that is valid for steady or time-variant velocity
functions.12 In Equation 12, the variable ‘ ’ can then

CPRs

∆tmax CPRs max,
∆tmax

CPRs max,

∆tmin
CPRs max, ∆tmin

CPRs max,
∆x L⁄( )p

∆tmin T⁄( )q
-----------------------------=

∆tmin
CPRs max,

∆tmin T CPRs max,( ) 1 q⁄– ∆x L⁄( )p q⁄=

CPRs

CPRs DERs

xp
u xp( )

xpd td⁄ u xp( )=

t
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represent either time or the distance along the
integration pathline. The discrete solution of Equation
12 entwines two distinct numerical techniques, each of
which imparts discretization errors into the simulation.

Spatial discretization error was incurred by mapping
velocities from a grid onto the particle through piece-
wise, cell-based interpolation. One-dimensional space is
often discretized into line-elements wherein linear
functions are used for isoparametric interpolation, i.e.
transforming the spatial coordinates and reconstructing
discretized continuum data.13 Spatial transformation
involves mapping the cell’s geometry from a physical,

, to a cell-based coordinate system, where .
Interpolation produces an approximate but continuous
mapping of discrete data, stored at cell-vertices (cv),

, to the cell’s interior. If the discrete-field data are
exact, , then the original continuum field,

, is modeled as the interpolant, , and a
discretization error as presented in Equation 13.

(13)

Equation 13 indicates that interpolation incurs a
discretization error. For linear interpolation, this error is
avoided if  is also linear. Conversely, when  is
non-linear, the spatial error is second-order, ,
where  is a cell width. The semi-discrete governing
equation substitutes the continuous velocity function
with the reconstruction field as shown in Equation 14.

(14)

Temporal or time-stepping discretization error was
incurred in this demonstration problem by using explicit
Runge-Kutta integrators to solve Equation 14. The
combination of time integration and spatial interpolation
formed the fully-discrete governing equation.

Velocity Field
Another requirement for the demonstration problem

was to ensure sufficient terms within the error-ansatz,
i.e., the integrator and interpolant should not provide the
exact solution. A non-linear, infinitely differentiable
sinusoidal velocity was used to satisfy this requirement.
Furthermore, the particle must not traverse through a
stagnation point where it would become trapped; if

 then Equations 12 and 14 dictate that 
becomes invariant. Herein, the velocity did not change
sign; for all ,  was guaranteed.

The velocity field is shown in Equation 15, where the
constants represent the wave amplitude, , the
average velocity, , and wavelength, .

(15)

x ξ 0 1,[ ]∈

x
cv

u
cv

u x
cv

( )=
u x( ) u ξ u

cv
,( )

u x( ) u ξ u
cv

,( ) O ∆x2( )+=

u x( ) u x( )
O ∆x2( )

∆x

xpd td⁄ u ξp u
cv

,( )=

u x( ) 0= xp t( )

t 0≥ u x( ) 0>

a 2=
b 2.75= λ 5=

u x( ) a 2πx λ⁄( )sin b+=

Exact Solution
The continuous formulation of the governing equation

is comprised of Equations 12 and 15. The exact solution
of these equations, including the particle’s initial
position, , and conditioned on ,
is presented in Equation 16 where .

(16)

Simulation Parameters
The spatial domain,  where , was

sufficiently long to contain at least three wave forms.
Equal grid spacings were used for each simulation,
where  and  is the number of cells.
Three grid resolutions where chosen for the temporal
convergence studies: . During
the time integration, where  and , the
particle moved through about two wavelengths.
Constant time-steps were used, where  and

 is the number of time-steps. Finally, the only
simulation parameter not specified above is , the
independent variable for temporal convergence studies.

Results and Discussion
The semi-discrete form of the demonstration problem,

Equation 14, was solved using five explicit Runge-Kutta
integrators12: the first-order or Euler’s method, mid-
point and trapezoidal second-order methods (RK2_Mid
and RK2_Trap), a third-order method (RK3) and a
fourth-order method (RK4). For each integrator,
temporal convergence studies were conducted for the
three prescribed grids. For the fifteen convergence
studies, the discretization error was measured using the

,  and  norms.7 The error profiles presented
below are limited to the  norm. For this smooth
problem, however, these error profiles are similar to
those obtained using the other norms. The following
results also focus on the finest grid resolution,

, because they are characteristic of the error
profiles obtained with each grid. This limited but
representative set of convergence profiles is used below
to evaluate the two proposed verification controllers.

One objective for this effort is to assess verification
controllers, which includes obtaining  and
confirming the ability of Equation 11 to predict .
Table 1 presents the maximum  values and the
corresponding time-steps for each integrator from a
previous version of this temporal convergence study.14

These parameters are indicated in the remaining figures.

x0 xp t 0=( )= b a>
c2 b2 a2–=

xp t( ) λ
π
--- c

b
--- 
 

b( ) πx0 λ⁄( )tan a+
c

----------------------------------------------- 
 atan πc

λ
------ 
  t+ a

b
---–
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Nc 160 480 and 1600,=
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Nt
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Five temporal convergence profiles, plotted as the
total numerical error verses the time-step, are presented
in Figure 3, one for each of the integrators. Numerous
simulations were conducted for each integrator to
characterize the error profiles. The two second-order
integrators produce nearly identical error profiles, and
so they are considered collectively in this discussion.
Within this logarithmic plot, the slope of each error
profile above , either one, two, three or four,
matches the desired convergence rate and, thus, verifies
each integrator. As the time-step is refined, the error
profiles asymptote to the identical, constant spatial error
because the grid is held fixed for these simulations.

As discussed previously, Figure 3 is the typical format
for presenting temporal convergence profiles. Indeed,
inspecting error-profile slopes, which are convergence
rates, is the graphical representation of solving reduced-
ansatz equations. Figure 3 also demonstrates the
difficulty in using time-steps to prescribe asymptotic
regimes. While  is nearly coincident at the start of
each regime,  and the regime’s extent differ for
each integrator. Unfortunately, when using time-steps to

∆tmin

∆tmax
∆tmin

ensure pure temporal error,  is most important.
These results, together with inferences from the full-
ansatz equation, suggest that time-steps are not practical
for the a-priori separation of discretization errors; the
time-steps that define an asymptotic regime’s bounds
and extent are algorithm and problem dependent.

The convergence profiles of this problem are different
than the one idealized in Figure 1. As shown in Figure 3,
the simulations conducted at relatively large time-steps
produced an oscillatory error profile. This behavior is
indicative of simulations conducted above ,
where the discrete and continuum governing equations
are mathematically inconsistent. Figure 1 also implies
that time and space errors do not interact below ,
but instead are additive linear functions for the total
discretization error. In contrast, Figure 3 indicates that
these errors interact non-linearly when they are of
comparable magnitude. Fortunately, this behavior is
localized near . To account for these interactions,
verification-controller limits can not be precise, rather
they should be general, conservative guidelines for the
a-priori separation of discretization errors.

Another, alternative presentation of this problem’s
convergence profiles is shown in Figure 4, where the
total numerical error is plotted verses the . In this
logarithmic plot, the slope of each integrator’s error
profile is minus one. This error-reduction rate is
expected because the  as defined in
Equation 8. This error-reduction rate relative to 
is an alternative verification of each integrator. While
the error-profile slopes in Figures 3 and 4 are different,
other characteristics of their convergence histories are

∆tmin

∆tmax

∆tmax

∆tmax

CPRs

CPRs 1 ∆t( )q⁄∝
CPRs

Integrator

Euler 0.012 1.63x10-4

RK2_Mid & Trap 0.063 1.25x10-2

RK3 0.29 5.52x10-2

RK4 1.4 1.15x10-1

CPRs max, ∆tmin

Table 1: Verification-Controller Limits and Time-Steps 
to Separate Discretization Errors; .Nc 1600=

∆t
Figure 3: Temporal Convergence History With Constant 
Spatial Error; ; Total Error vs. Time-Step.Nc 1600=
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similar. For each integrator, the error near the start of
asymptotic regimes is nearly coincident at .
As the time-step is refined, the error profiles asymptote
to the identical, constant spatial error at .

While an error profile’s slope can be used to verify a
numerical method, the pertinent feature of these profiles
for verification controllers are the asymptotic-regime’s
bounds. In Figure 4,  and  are
unique for each integrator. The full extent of each
regime, however, is comparable. The span of 
and  is about three decades except for RK4.
This limitation appears as a difficulty in initiating the
asymptotic threshold, which may be expected for any
higher-order method. The  appears to be more
practical than time-steps for the a-priori separation of
discretization errors; while the algorithmic dependence
of  is confirmed in Figure 4, the extent of the
asymptotic regime’s is similar for each integrator.

In Figure 5, the total numerical error is plotted verses
a dimensional variant of , which is easily derived
from Equation 8: . The slope of each
error profile is minus one, which represents the third
example of verification in this report. The start and exit
of each integrator’s asymptotic regime are also similar.
Indeed, discretization errors appear to decouple when

. The extent of each integrator’s
asymptotic regime is also comparable at about three
decades. The dimensional variant of the  appears
to be more practical than time-steps for the a-priori
separation of errors; the bounds and extent of each
integrator’s asymptotic regime in Figure 5 are similar.

L∞ 10 1–≈

L∞ 2 10 4–×≈

CPRs min, CPRs max,

CPRs min,
CPRs max,

CPRs

CPRs max,

CPRs
CPRs L( )p T( )q⁄

CPRs L( )p T( )q⁄ 100≈

CPRs

A fourth presentation of the demonstration problem’s
error profiles is shown in Figure 6, where the total
numerical error is plotted verses the . In this plot,
the slope of each integrator’s error profile is minus one
because the  as defined in Equation 6.
This error-reduction rate relative to  is the fourth
example of verification presented in this report.

More importantly, because the convergence profiles
are nearly identical in Figure 6, the  appears as a
similarity variable for separate verification. At the start
of each regime,  is nearly coincident, except
for the highest-order integrator which requires a lower
starting time-step. At the regime exit,  is also
nearly coincident, but there is a slight variation in error
profiles between the even and odd-ordered integrators.
The even-ordered methods exhibit a more pronounced
and slightly broader interactive region around . In
contrast, the odd-ordered methods smoothly transition
from temporal to spatial error as the time-step is refined.

The convergence profiles in Figure 6 also support the
contention that the  provides a universal constant
for separating discretization errors. By definition, the

 is unity when the temporal and spatial errors are
equivalent. The total numerical error is dominated in
Figure 6 by a single error source when the  varies
by one or more orders-of-magnitude. Indeed, the non-
linear interactive region between two error sources
appears to be conservatively bound by .
When , spatial error dominates the total
numerical error. Conversely, when , the
total error is dominated by temporal error. Reduced-
ansatz equations, thus, can only be solved accurately
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when discretization errors differ by at least an order-of-
magnitude, as codified by .

As discussed above and implied within each figure of
this report, minimizing the spatial discretization error
may broaden the separate-temporal asymptotic regime.
This effective but heuristic strategy to produce pure
temporal error, however, can be made precise through
the proper use of verification-controllers.

Summary
This report proposes and demonstrates verification

controllers. These novel numerical tools can be used to
ensure the accuracy and enhance the efficiency of
separate time and space convergence studies by
decoupling discretization errors. These new tools are
algebraic constraints on time-steps and grid-spacings
that must be satisfied concurrent with the convergence-
study simulations. Two verification controllers are
presented: the discretization-error ratio ( ) and the
convergence-power ratio ( ).

Temporal convergence studies were then conducted to
assess the verification-controller limits,  and

. The  appears to be more practical than
time-steps for the a-priori separation of discretization
errors; while the algorithmic dependence of 
is confirmed, the extent of the asymptotic regime’s is
similar for each integrator. For the dimensional variant
of the , both the bounds and the extent of the
asymptotic regimes are similar for each integrator. The

 was shown to be a similarity variable for separate
verification as the convergence histories coalesced onto
a single error profile. The  also implied a universal
constant for decoupling errors; accurate separate
verification analyses require that discretization errors
differ by at least one order-of-magnitude.

While the theoretical foundation and practical utility
of verification controllers were explored, the application
of these new tools was limited in this initial report.
Additional test problems, particularly for more complex
numerical PDE solvers and a variety of test problems,
are warranted. An investigation into the combined use
of verification controllers and CFL constraints, often
required for algorithmic accuracy and stability, is also
suggested; both of these numerical tools are algebraic
constraints on the time-step and grid-spacing that must
be satisfied concurrent with the numerical simulation.

Acknowledgement
This work was performed by the Los Alamos National
Laboratory, which is operated by the University of
California for the U. S. Department of Energy under
contract W-7405-ENG-36. The helpful discussions of
James R. Kamm are gratefully acknowledged.

DERmax 10 1–≈

DER
CPR

CPRmax
DERmax CPRs

CPRs max,

CPRs

DER

DER

References
1) Twizell, E. H., Computational Methods for Partial
Differential Equations, Halsted, NY, 1984.

2) Evans, G., Blackledge, J. M. and Yardley, P.,
Numerical Methods for Partial Differential Equations,
Springer, NY, 2000.

3) Roache, P. J., Verification and Validation in
Computational Science and Engineering, Hermosa,
Albuquerque, NM, 1998.

4) Oberkampf, W. L. and Trucano, T. G., “Verification
and Validation in Computational Fluid Dynamics,”
Sandia National Laboratory, SAND-2002-0529, 2002.

5) Knupp, P. and Salari, K. Verification of Computer
Codes in Computational Science and Engineering,
Chapman & Hall/CRC, Boca Raton, FL, 2002.

6) Oberkampf, W. L., Trucano, T. G. and Hirsch, C.,
“Verification, Validation and Predictive Capability in
Computational Engineering and Physics,” Sandia
National Laboratory, SAND-2003-3769, 2003.

7) Kamm, J. R., Rider, W. J. and Brock, J. S.,
“Consistent Metrics for Code Verification,” Los
Alamos National Laboratory, LA-UR-02-3794, 2002.

8) Kamm, J. R., Rider, W. J. and Brock, J. S.,
“Combined Space and Time Convergence Analysis of a
Compressible Flow Algorithm,” AIAA Paper, AIAA-
2003-4241, 2003. (Los Alamos National Laboratory,
LA-UR-03-2628, 2003.)

9) Warming, R. F. and Hyett, B. J., “The Modified
Equation Approach to the Stability and Accuracy
Analysis of Finite-Difference Methods,” Journal of
Computational Physics, Vol. 14, pp. 159-179, 1974.

10) Griffiths, D. F. and Sanz-Serna, J. M., “On the
Scope of The Method of Modified Equations,” SIAM
Journal on Scientific and Statistical Computing, Vol. 7,
pp. 994-1008, 1986.

11) Villatoro, F. R. and Ramos, J. I., “On the Method of
Modified Equations: Asymptotic Analysis of the Euler
Forward Difference Method,” Applied Mathematics
and Computations, Vol. 103, pp. 111-139, 1999.

12) Ascher, U. M. and Petzold, L.R., Computer Methods
for Ordinary Differential Equations and Differential-
Algebraic Equations, SIAM, Philadelphia, PA, 1998.

13) Reddy, J. N., An Introduction to the Finite Element
Method, McGraw-Hill, New York, NY, 1984.

14) Brock, J. S., “Discretization Errors for Separate-
Verification Analyses,” Los Alamos National
Laboratory, LA-UR-03-2618, 2003.


	ISOLATING TEMPORAL-DISCRETIZATION ERRORS FOR SEPARATE-VERIFICATION ANALYSES
	Abstract
	Introduction
	Separate-Verification Analysis
	Verification Controllers
	Demonstration Problem
	Results and Discussion
	Summary
	Acknowledgement
	References

		2004-01-20T13:27:27-0700
	Mona L. Mosier




